National Championships & July Challenge (Summer Nationals)

Y-14 Women's Saber

Friday, July 7, 2023 at 2:00 PM

Phoenix Convention Center - Phoenix, AZ, USA

Probability density of pool victories

Reset

Explore the pool victory probability density for each fencer, with their actual victories highlighted in a box. Learn more.

# Name Number of victories
0 1 2 3 4 5 6
1 TABANGAY Heartlyn - - - 4% 19% 42% 34%
2 BERMAN greta - - 2% 12% 33% 38% 15%
3 JEONG Katie - - - 2% 12% 39% 47%
3 TSUI Natalie - - 1% 5% 22% 42% 30%
5 HUAI Delilah - - 1% 9% 36% 53%
6 KONDEV Elizabeth - - 1% 11% 33% 39% 16%
7 PABIAN Emilia - 1% 8% 31% 39% 19% 3%
8 LAURI Keira - 2% 11% 26% 34% 22% 5%
9 SCHMIDT Isabel - - - 4% 19% 43% 34%
10 YOUNG Charlotte G. - - - 4% 20% 43% 33%
11 LIM Jaslene - - - 4% 18% 43% 35%
12 HUGHES-WILLIAMS Adelayde - 2% 12% 29% 34% 18% 4%
13 WEI JoyAnn - - 2% 14% 34% 36% 13%
14 MALEK Zolie - - 2% 14% 33% 36% 14%
15 LIU Hannah - 4% 16% 33% 33% 14% 1%
16 BORDAS HILL Georgiana - 2% 12% 30% 35% 18% 3%
17 CHIARELLI Valentina - - - 5% 20% 42% 33%
18 ZHANG XUANYI - - - 1% 7% 33% 59%
19 DENG Brooke - - - 4% 20% 42% 33%
20 LIU Yifei - - - 3% 15% 40% 42%
20 WANG Callie - - 4% 18% 37% 33% 8%
22 MUNGUIA Mila - 12% 34% 35% 15% 3% -
23 ZENG Sarah - - 4% 18% 42% 37%
24 DANG Kelia - 1% 5% 20% 42% 34%
25 TSE Angelina - - - 1% 9% 37% 53%
26 KANG Ellie - - 5% 21% 37% 29% 8%
27 CONG Anne - 2% 13% 31% 34% 17% 3%
28 FAVO Isabella - 1% 8% 27% 41% 23%
29 KNOBEL Sophia - 1% 8% 24% 38% 25% 4%
30 DHAR Layla - 1% 7% 21% 35% 28% 8%
31 MUND Ruth - - - 4% 18% 41% 37%
32 LIN Elaine - 2% 11% 28% 34% 20% 5%
33 LIU Sydney - 1% 9% 26% 35% 23% 6%
34 MCKEE Brynnley - - - 1% 8% 35% 57%
35 SO Catelyn - - - 1% 8% 35% 56%
36 HU Anna - 1% 8% 26% 37% 23% 5%
37 LOO Kaitlyn - 1% 5% 21% 38% 28% 7%
38 TAN Adelyn - 2% 12% 30% 34% 18% 4%
39 PROBASCO Leila 1% 9% 27% 35% 22% 6% 1%
39 CANSECO Carly - 1% 7% 21% 34% 28% 9%
41 MERCHANT Aishwarya - 1% 10% 29% 37% 19% 3%
42 CHAN Jolene - 2% 8% 23% 34% 25% 7%
43 GOLDIN Nina - 2% 14% 34% 36% 14%
44 GUGALA Hanna 2% 14% 33% 34% 16% 3%
45 RANJAN Diya 3% 16% 34% 33% 13% 2%
46 DANTULURI Shalini - 1% 9% 29% 37% 20% 4%
47 MANN Sophia J. - 1% 9% 27% 36% 22% 4%
48 DEHON Inès - 4% 19% 36% 30% 10% 1%
49 BUHAY Kirsten M. - - 3% 15% 36% 35% 10%
50 LIN Nicole - - 1% 8% 27% 41% 23%
51 LATYSHAVA Stephanie 2% 14% 32% 32% 16% 3% -
52 LEI Zitong (Meya) - 3% 18% 35% 31% 12% 2%
53 KURAEVA Vasilisa - - 3% 14% 33% 37% 13%
54 CHIANG Melissa - 1% 6% 22% 38% 28% 5%
55 MYAT Chloe 1% 8% 26% 37% 23% 5%
56 CHEN Kevy 1% 11% 31% 36% 17% 3%
57 ATTIA Jasmine - 1% 7% 21% 34% 28% 9%
58 TA-ZHOU Emma 1% 10% 30% 35% 19% 4% -
59 FAN Alexandria 3% 15% 31% 31% 16% 4% -
59 DAVIDOVA Kira - 4% 19% 37% 29% 10% 1%
61 DUDNICK Morgan 1% 7% 23% 36% 26% 7% 1%
62 BORGUETA Madison 8% 27% 35% 22% 7% 1% -
63 FENG Alicia G. - 2% 11% 31% 35% 17% 3%
64 PALMIERI Giuliana M. 7% 27% 37% 22% 6% 1% -
65 SCHAIBLE Sofia L. - 1% 5% 19% 35% 31% 10%
66 MAKLIN Sofia - - 1% 6% 24% 43% 26%
67 HUANG Rachael - - 3% 18% 39% 32% 9%
68 PANTALEON-MAZOLA Amari - 2% 10% 28% 36% 20% 3%
69 FERNANDEZ Martina - - 3% 12% 30% 37% 18%
69 SINGER Ellery 32% 41% 21% 5% 1% < 1% -
71 STONE Coral - - 5% 20% 39% 29% 7%
72 CHEN Elaine - 4% 17% 33% 31% 13% 2%
73 DAMBAL Sasha - 1% 6% 23% 38% 26% 6%
73 BUSH Bethany - 2% 12% 31% 36% 17% 3%
75 WANG JiaQi 1% 10% 25% 33% 22% 7% 1%
76 MOON Claire 17% 38% 31% 11% 2% -
77 YOUNG Audrey - 5% 20% 38% 30% 6%
78 DIECK Miranda P. 1% 7% 24% 37% 25% 6%
79 VINOGOROVA Sofiia - 2% 12% 32% 38% 16%
80 BAERENWALD Welles 2% 15% 34% 33% 14% 2%
81 HAMMERSTROM Aria - 2% 13% 30% 34% 18% 3%
82 GAUTAM Sahana - - 1% 9% 31% 41% 18%
83 LOMOTAN Addison 3% 17% 32% 30% 14% 3% -
84 GONZALEZ Veronika 3% 15% 31% 31% 16% 4% -
85 KIM Satie 9% 34% 37% 16% 3% - -
86 ZOLLER Noelle - 2% 12% 30% 35% 18% 3%
87 LO Chloe - 2% 10% 28% 37% 21% 3%
88 ARNOLD Hali - - 3% 15% 33% 34% 14%
89 SPEARS Mya B - 1% 8% 25% 37% 24% 5%
90 WANG Jiayi 2% 11% 27% 33% 21% 6% 1%
91 HUCHWAJDA Pola - 2% 11% 27% 35% 21% 5%
92 CHAN Madeleine V. 3% 17% 33% 31% 13% 2% -
93 MACKAY Katherine 12% 32% 34% 17% 4% - -
94 KWON Ava 1% 7% 22% 33% 25% 10% 1%
95 SUNG Isabella 2% 14% 32% 33% 16% 3% -
96 CHI Claire 3% 18% 34% 30% 12% 2% -
97 MEYERSON Michelle 10% 32% 36% 18% 4% -
98 LUKER Hannah 10% 31% 36% 19% 5% -
99 AWAD Royce 2% 13% 31% 34% 17% 3%
100 CHAVAN Arya - 1% 5% 21% 39% 29% 5%
101 BUCKHOUSE Talia 3% 15% 31% 31% 16% 4% -
102 HSU leah - 2% 11% 29% 36% 19% 3%
103 SEBASTIAN Ava 13% 33% 33% 17% 4% 1% -
104 GENTILE Vittoria 8% 28% 36% 21% 6% 1% -
105 NIU Jessica 5% 21% 37% 27% 9% 1% -
106 KRIVOSHEEV Alexandra - 2% 11% 29% 36% 19% 3%
107 MCAFEE Jada 1% 6% 23% 36% 26% 8% 1%
108 ZHAN Sophie - 2% 11% 30% 36% 19% 3%
109 LIN Kyleen - 3% 15% 32% 32% 15% 3%
110 WANG Peijia 7% 31% 38% 20% 5% -
111 MANI Francesca B. 1% 9% 28% 37% 21% 4%
112 PADANILAM Lily 4% 20% 36% 28% 10% 2% -
113 KHOST Maeve 4% 21% 36% 27% 9% 1% -
114 GUVEN Coco - - 2% 13% 35% 38% 12%
115 MERMEGAS Olivia 5% 20% 33% 28% 12% 2% -
116 CAI Veronica 1% 11% 34% 35% 16% 3% -
117 ZHAI AMY 1% 8% 24% 35% 24% 7% 1%
118 LEMUS-IAKOVIDOU ALEXANDRA - - 1% 8% 25% 40% 25%
119 CHEN Colette 1% 9% 25% 33% 23% 8% 1%
120 MEDVINSKY Alexandra - 1% 7% 23% 37% 26% 6%
121 BERRIOS Catalina 1% 9% 29% 36% 20% 5% -
122 FOSS Persephone 3% 16% 33% 31% 14% 3% -
123 WALLER London 2% 11% 29% 34% 19% 4% -
124 LIU Hannah 14% 39% 32% 12% 2% - -
125 SHEN Emily 8% 28% 36% 21% 6% -
126 SEAL Cameron I. 6% 25% 36% 24% 7% 1%
127 HALPERIN Elizabeth H. 1% 12% 31% 35% 18% 3%
128 HUANG Neila 6% 26% 38% 24% 6% -
129 KORINTH Jacqueline 1% 17% 38% 31% 11% 2% -
130 KWON Hannah 9% 31% 36% 19% 5% 1% -
131 XIE Nora - 5% 19% 34% 29% 11% 1%
132 IANNUZZI Lucy 3% 20% 39% 28% 9% 1% -
133 CAO Sophie - 5% 20% 34% 28% 11% 2%
134 DOLEV Rony 3% 19% 37% 29% 10% 1% -
135 GONG Joy - 5% 20% 37% 30% 8%
136 GARRETT Madrid - 1% 10% 30% 38% 18% 2%
137 LEOU Korina - 5% 21% 35% 27% 10% 1%
138 STADNIK Emilia 5% 22% 36% 26% 9% 1% -
139 FORD-BURRIS Zooey 17% 42% 30% 9% 1% - -
140 MISHEV Lila 1% 7% 23% 34% 26% 9% 1%
141 NICHOLAS Eva 1% 14% 35% 33% 14% 3% -
141 KAUL Tara 5% 27% 46% 19% 3% - -
143 BAIREDDY Maya - 12% 33% 35% 16% 3% -
143 NADKARNI Marisa 2% 15% 36% 32% 13% 2% -
145 HAN Emma 5% 24% 40% 24% 6% 1% -
146 TONG Laurie 3% 17% 35% 31% 12% 2% -
147 KWON Ava 26% 41% 25% 7% 1% - -
148 NAIR Supriya 4% 18% 32% 29% 14% 3% -
149 VISWANATHAN Nishka 32% 42% 20% 5% 1% - -
150 WONG Charlene 24% 47% 24% 5% - - -
151 LIANG Claire 21% 40% 29% 9% 1% -
152 SENGUPTA Jia 2% 15% 35% 33% 13% 1%
153 KINKADE Ellie - 1% 10% 27% 35% 22% 5%
154 HILD Anya 15% 37% 33% 13% 2% - -
155 YUEN Nicole 13% 40% 34% 12% 2% - -
156 LEE Irene 4% 19% 35% 29% 11% 2% -
157 GAY Sasha 1% 21% 39% 28% 9% 1% -
158 HUANG Pierra 71% 25% 3% - - - -
159 TERP Lucy 38% 43% 16% 3% - - -
160 UEMOTO Lynn 15% 34% 32% 15% 4% 1% -
161 KU Alathea-Joy 1% 8% 26% 37% 22% 6% -
162 SRINATH Lyra A. 3% 28% 39% 23% 7% 1% -
163 BROWN Aria 9% 29% 35% 21% 6% 1% -
164 PHAN Genevieve 42% 44% 13% 1% - - -
165 KIM Alice 81% 18% 1% - - - -
166 LEIGH Adalene 30% 43% 22% 5% 1% - -
167 XU Rachel 36% 45% 16% 2% - - -
168 CROOKS Riley 1% 6% 22% 35% 26% 9% 1%
168 ILAGAN Ava 1% 17% 37% 31% 12% 2% -
170 KIM Audrey 38% 41% 17% 3% - - -
171 VINOKUR Anita 2% 12% 28% 32% 19% 6% 1%
172 FUNG Iris 6% 24% 36% 24% 8% 1% -
173 CASTELO Soleil 4% 21% 36% 27% 10% 2% -
174 JUILLERAT Elina 46% 40% 13% 2% - -
175 DHAR Rana 13% 35% 34% 15% 3% -
176 FLEEGER Sophia 46% 41% 12% 1% - - -
176 WONG Cerise 6% 26% 37% 23% 7% 1% -
176 LIU kai yin aria 5% 22% 35% 27% 10% 1% -
176 KONZEN Iris 26% 41% 25% 7% 1% - -
180 BAIRD Kaleah 50% 37% 11% 2% - -
181 WU Chloe 18% 45% 29% 8% 1% - -
181 LEE Kaitlin 32% 44% 20% 4% - - -
181 ZAWADA Milena 16% 36% 31% 14% 3% - -
184 WILLIAMSON Morgan 33% 42% 20% 5% - - -
185 JONES Veronica C. 39% 42% 16% 3% - - -
185 PATIL Jyothi 10% 35% 36% 16% 3% - -
187 ROOPRAI Amarjot 7% 26% 37% 23% 7% 1%
188 DESAUTELS Alexandra 22% 49% 25% 4% - - -
189 ORIA Isabel 72% 24% 3% - - - -
190 ELIASIK Josephine 16% 38% 32% 12% 2% - -
191 MALVESTUTO Prudence 87% 13% 1% - - - -

Explanation

The heatmap in this table provides a visual representation of the victory probability distribution for each fencer in their respective pools:

This heatmap visualization offers an immediate understanding of each fencer's expected performance compared to their actual results.