Rockland Community College, Eugene Levy Field House - Suffern, NY, USA
Explore the pool victory probability density for each fencer, with their actual victories highlighted in a box. Learn more.
# | Name | Number of victories | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | ||
1 | MISHIMA Audrey | - | - | 2% | 10% | 30% | 40% | 19% |
2 | KAUR Manroop | - | - | - | 4% | 20% | 42% | 33% |
3 | CASHMAN Amanda | - | 3% | 15% | 31% | 32% | 16% | 3% |
3 | LOBANOVA Varvara | - | - | 2% | 10% | 30% | 40% | 18% |
5 | WANG Trinity | - | - | 1% | 8% | 33% | 43% | 16% |
6 | QI Julieanne | - | - | 1% | 7% | 24% | 41% | 27% |
7 | BURROWS Beatrice | 4% | 21% | 35% | 28% | 10% | 2% | - |
8 | PAN Angela | - | 1% | 6% | 22% | 37% | 27% | 7% |
9 | VENKATESAN Harshitha | - | 1% | 4% | 18% | 36% | 32% | 10% |
10 | ZHANG Michelle | - | - | - | 2% | 18% | 44% | 36% |
11 | ADYANTHAYA Anika | - | - | 1% | 7% | 26% | 42% | 23% |
12 | ZHANG Jane | - | 3% | 13% | 29% | 34% | 18% | 3% |
13 | NING Miranda | 1% | 6% | 20% | 33% | 28% | 11% | 1% |
14 | BISONO Valentina | - | 3% | 15% | 30% | 32% | 16% | 3% |
15 | CHERNOBRIVETS Maria | 4% | 21% | 39% | 27% | 8% | 1% | - |
16 | GOLIYAD Lisa | - | 1% | 8% | 27% | 37% | 22% | 4% |
17 | NOVOJILOV Anastasia | - | - | 1% | 5% | 20% | 41% | 33% |
18 | MEYER Rebecca | - | 1% | 7% | 25% | 38% | 24% | 5% |
19 | BO GENESIS | - | 1% | 7% | 23% | 38% | 26% | 6% |
20 | WEI Sherry | - | - | 3% | 14% | 32% | 35% | 15% |
21 | LI Caroline | - | - | 3% | 13% | 31% | 36% | 16% |
22 | LI Yixin Catherine | - | 3% | 16% | 34% | 32% | 13% | 2% |
23 | SHEFFIELD Skye | - | - | 4% | 20% | 41% | 29% | 6% |
24 | SHAYAKHMETOVA Suzanna | - | 1% | 6% | 21% | 36% | 29% | 8% |
25 | DHAIYA Tanya | - | 1% | 6% | 20% | 35% | 29% | 9% |
26 | FANG Kayla | - | - | 2% | 13% | 34% | 37% | 13% |
27 | YU Eva | - | 2% | 10% | 27% | 35% | 21% | 5% |
28 | LIANG Carina | 2% | 14% | 31% | 32% | 17% | 4% | - |
29 | MEYER Rachel | - | 2% | 15% | 43% | 31% | 8% | 1% |
30 | FANG Jocelyn | - | 4% | 17% | 33% | 30% | 13% | 2% |
31 | YAO Chloe | - | 1% | 10% | 30% | 36% | 18% | 3% |
32 | WONG Angelina | 1% | 8% | 24% | 34% | 24% | 8% | 1% |
33 | FUNATOMI Maya | 3% | 17% | 34% | 31% | 13% | 2% | - |
34 | ZHENG Erin | 1% | 11% | 30% | 36% | 18% | 4% | - |
35 | CHI Sarah | 1% | 9% | 29% | 35% | 20% | 5% | - |
36 | WONG Sydney | - | 3% | 14% | 30% | 32% | 17% | 4% |
37 | KANG kailin | - | 1% | 9% | 26% | 37% | 22% | 5% |
38 | CHOU Andrea | 10% | 32% | 35% | 18% | 5% | 1% | - |
39 | ALVAREZ Martine | 27% | 41% | 24% | 7% | 1% | - | - |
40 | BOROTKO Katerina | - | 3% | 15% | 33% | 32% | 14% | 2% |
41 | KAMENSKY Elina | 2% | 14% | 31% | 32% | 17% | 4% | - |
42 | HALL Henrietta | 19% | 40% | 29% | 10% | 2% | - | - |
43 | HU Chloe | 3% | 18% | 37% | 30% | 11% | 2% | - |
44 | LIN Cynthia | 4% | 19% | 35% | 29% | 11% | 2% | - |
45 | DESANTIS-IBANEZ Elena | - | - | 1% | 6% | 24% | 42% | 27% |
46 | ZHONG Evelyn | 1% | 9% | 25% | 34% | 23% | 7% | 1% |
47 | GORTI Aadya | 16% | 41% | 31% | 10% | 1% | - | - |
47 | LI Nicole | 5% | 28% | 39% | 22% | 5% | 1% | - |
49 | YU Livia | 2% | 12% | 31% | 34% | 17% | 4% | - |
50 | ORDORICA Abra | 7% | 29% | 36% | 21% | 6% | 1% | - |
51 | SONG Charlotte | 24% | 43% | 25% | 7% | 1% | - | - |
52 | SHABBIR Aiza | 24% | 53% | 20% | 2% | - | - | - |
53 | LEUNG Sydney | 30% | 41% | 22% | 6% | 1% | - | - |
54 | LEUNG Morgan | 32% | 44% | 20% | 4% | - | - | - |
54 | TORRES AGUILERA Mika | 46% | 39% | 13% | 2% | - | - | - |
56 | BEJUGAMA Lasya | 21% | 40% | 28% | 10% | 2% | - | - |
57 | XIAO Katelyn G. Xiao | 9% | 30% | 36% | 20% | 5% | 1% | - |
58 | DIBENEDETTI Isabella | 48% | 42% | 9% | 1% | - | - | - |
59 | STOCKTON Catherine | 16% | 36% | 32% | 13% | 3% | - | - |
60 | MARTIN Dylan | 2% | 19% | 47% | 26% | 5% | - | - |
61 | WROBEL Julia | 6% | 26% | 36% | 23% | 8% | 1% | - |
62 | CHAKRAPANI Tara | 16% | 38% | 32% | 12% | 2% | - | - |
63 | LIU Nicolette | 24% | 44% | 24% | 6% | 1% | - | - |
The heatmap in this table provides a visual representation of the victory probability distribution for each fencer in their respective pools:
This heatmap visualization offers an immediate understanding of each fencer's expected performance compared to their actual results.