Division 1/Para Championships + April NAC

Junior Women's Épée

Sunday, April 13, 2025 at 3:00 PM

Los Angeles Convention Center - Los Angeles, CA, USA

Probability density of pool victories

Reset

Explore the pool victory probability density for each fencer, with their actual victories highlighted in a box. Learn more.

# Name Number of victories
0 1 2 3 4 5 6
1 GU Sarah - - - 7% 36% 57%
2 KORFONTA Jolie - - - - 5% 29% 66%
3 FERREIRA DE MELO Adriana - 1% 7% 24% 37% 25% 6%
3 WAT Chok Weng - - - 3% 20% 45% 32%
5 LEE Scarlett - - - 4% 18% 41% 37%
6 YANG Alisa - - - 2% 15% 42% 40%
7 SHIV Avni - - 3% 15% 35% 35% 12%
8 LI Fei - - 4% 19% 37% 31% 9%
9 BEZUGLAYA Varvara - - - 2% 15% 43% 41%
10 GAJJALA Sharika R. - - - - 5% 29% 66%
11 DOROSHKEVICH Victoria - - 1% 10% 32% 42% 14%
12 CARRIER Meredith - 1% 6% 26% 44% 24%
13 CHISHOLM Phoebe C. - - 3% 16% 35% 34% 11%
14 XIAO Nancy - 3% 16% 34% 33% 13% 1%
15 NEELAM Navya - 3% 18% 36% 32% 10% 1%
16 PECK Maia A. - - 2% 16% 37% 34% 11%
17 KLIMENKO Anna - - 1% 9% 31% 41% 18%
18 PROFIS Liora - - 1% 6% 26% 46% 22%
19 MUN Brianna K. - 3% 15% 35% 32% 13% 2%
20 SPRINGER Sierra - - 1% 12% 40% 47%
21 CAFASSO Natalya - 1% 6% 24% 42% 28%
22 HUREL Bertille - - 5% 24% 45% 26%
23 FENG Ge - - 1% 6% 26% 43% 24%
24 YAO Melinda - - 1% 8% 29% 41% 21%
25 XIONG Angelica - 1% 8% 24% 35% 25% 6%
26 STERR Isabella M. - 1% 9% 27% 37% 22% 5%
27 BEAVER Ava - 5% 22% 38% 27% 7% 1%
28 WALTER Anna 15% 35% 32% 14% 3% - -
29 WU Jessica 5% 21% 35% 28% 10% 1%
30 YOUNG VIVIAN - - 1% 12% 38% 38% 11%
31 LI Caroline 3% 21% 38% 28% 9% 1% -
32 PEHLIVANI Zara - 2% 12% 34% 38% 15%
33 GUO Luxi - - 1% 11% 37% 40% 11%
34 BARG Daniella - 3% 20% 41% 30% 6%
35 WANG Ziqi (yoyo) - - 2% 13% 36% 38% 12%
36 ZANGA Kaitlyn - - 5% 22% 38% 28% 7%
37 KHARCHYNA Polina - - - 1% 14% 43% 42%
38 SEBASTIAN Felicity A. - - - 3% 19% 44% 33%
39 WITTER Catherine A. - - 2% 14% 36% 36% 12%
40 YAO Yilin - - 3% 18% 38% 32% 9%
41 BECKMAN Ana - - 1% 6% 22% 41% 30%
42 WANG Zoe - 1% 5% 20% 37% 30% 7%
43 ZIGALO Elizabeth - - - 1% 8% 36% 54%
44 GOH Cayla - 10% 30% 35% 19% 5% -
45 XU Yvette - 2% 13% 33% 34% 15% 2%
46 SEREGIN Katya - 2% 12% 31% 38% 18%
47 BUSH emma - 7% 25% 38% 25% 5%
48 WANG Jessie 4% 32% 44% 18% 3% -
49 YU Nicole J. - - 1% 5% 22% 42% 30%
50 ILYAS Ayah - 4% 21% 38% 28% 9% 1%
51 HANKINS Morgan - 2% 11% 31% 37% 18% 2%
52 CALDERA Lexi I. - - 2% 13% 39% 37% 10%
53 YOU Isabel B. 3% 18% 35% 30% 12% 2% -
54 NEMETH Katherine - - 2% 10% 31% 41% 15%
55 WANG Chloe 7% 27% 37% 23% 6% 1% -
56 LEE Claire 1% 11% 34% 36% 16% 2%
57 PRIHODKO Nina - 3% 16% 33% 31% 14% 2%
58 SMOTRITSKY Mia - - 2% 12% 34% 38% 14%
59 MANDAP Svetlanna - 5% 18% 33% 29% 12% 2%
60 WANG Victoria - 5% 19% 35% 30% 9% 1%
61 CHI Chelsea - 4% 20% 39% 29% 8%
62 LEE Olivia - 4% 16% 34% 34% 12%
63 LEWIS Rachel 8% 31% 38% 19% 4% -
64 ELSTON Sophia - 1% 6% 22% 39% 29% 4%
65 ABUELFUTUH Sama - 3% 16% 37% 31% 11% 1%
66 POHREBNA Yeva - - 4% 20% 37% 30% 8%
67 MEHROTRA Anya - - - 3% 15% 40% 43%
68 HAUSHEER Kuncen - 12% 35% 35% 15% 3% -
69 PADHYE Tanishka - - - 3% 17% 44% 36%
70 CHI Zoe 1% 13% 47% 31% 8% 1% -
71 SMUK Alexandra S. - - 2% 14% 36% 38% 9%
72 WONG Caitlin 2% 12% 30% 33% 18% 5% -
73 KANG Yenna 4% 20% 38% 29% 8% 1% -
74 HE Anna 3% 18% 36% 31% 11% 2% -
75 KUMAR Eva - 1% 9% 28% 39% 21% 2%
76 DESAI Meera P. - 1% 9% 30% 40% 19%
76 LAI Amanda 2% 14% 35% 35% 13% 2%
78 SONG Angela - - 2% 11% 35% 40% 12%
79 SUN Zeyu (Cathy) - 6% 23% 35% 25% 8% 1%
80 ZHANG Victoria R. - - - 2% 14% 42% 42%
81 WU Michelle - 4% 17% 35% 31% 11% 1%
82 LEE Natasha - - 1% 7% 26% 42% 24%
83 FALLON Kyle R. - - - - 4% 28% 68%
84 WANG Trinity - 3% 21% 40% 27% 8% 1%
85 BALAKRISHNAN Trisha - 4% 19% 34% 30% 12% 2%
86 YOU Emily - - 2% 14% 35% 36% 12%
87 PULLARA Ashley 1% 8% 24% 35% 24% 7% 1%
88 LEE yat ching - 1% 7% 26% 38% 23% 5%
89 PHUKAN Indra 2% 13% 30% 33% 17% 4% -
90 HERD Angela 2% 32% 44% 19% 3% - -
91 SUICO Kyubi Emmanuelle - 7% 32% 42% 16% 2% -
92 HABEK Sophia - 6% 29% 41% 21% 3%
93 CAMPBELL Eva - 2% 12% 34% 39% 13%
94 MAI Mailan 3% 21% 38% 28% 9% 1%
95 AZMEH nour - 4% 23% 45% 25% 3%
96 JIN Zhengtian 1% 9% 30% 39% 19% 3%
97 KAUR Manroop 4% 21% 38% 28% 8% 1%
98 MANDAP Alessandra 48% 40% 11% 1% - -
99 SWENSON Nikita G. - - 3% 17% 37% 33% 10%
100 POTAPENKO Margarita D. - 1% 7% 24% 40% 25% 3%
101 HAFEEZ Hania - - 2% 11% 32% 38% 17%
102 DAHER Yasmine - - 5% 26% 41% 24% 4%
103 HAFEEZ Hiba - 4% 19% 34% 30% 12% 1%
103 DUONG Zoey 4% 24% 39% 25% 7% 1% -
105 RICHARDSON Meredith - 2% 11% 28% 35% 20% 4%
106 KAUSHISH Sara 1% 9% 26% 36% 23% 6% -
107 MUELLER Emma M. - - 1% 8% 33% 43% 15%
107 LEE Gloria Y. 1% 5% 19% 33% 29% 12% 2%
109 QI Julieanne - 2% 13% 36% 34% 13% 2%
110 MARTYNOVA Diana - - 4% 19% 41% 30% 6%
111 LAN Alice S. - - 1% 6% 24% 42% 27%
112 KROTZ Gemma 11% 32% 35% 18% 4% - -
113 MENDOZA zoie - 9% 30% 36% 19% 5% -
114 SU Evelyn 1% 7% 24% 36% 25% 7% -
115 BROWN Riley 2% 16% 36% 32% 12% 2% -
115 KANASKAR Ila 3% 17% 34% 31% 13% 2% -
117 SUN Karolyn 1% 25% 45% 24% 4% - -
118 BASRALIAN Azniv - 7% 25% 38% 25% 6%
119 BRAGG Leah 5% 22% 36% 27% 9% 1%
120 XU Jessica 12% 33% 34% 16% 4% -
121 NGUYEN Tallulah - 1% 9% 35% 43% 11%
122 SAUCEDO Grecia 6% 25% 36% 24% 8% 1%
123 PACHECO Carys 7% 27% 36% 23% 6% 1% -
124 LEE Camilla - 6% 22% 35% 27% 9% 1%
125 CHEUNG Andrea - 1% 8% 23% 35% 25% 7%
126 WANG Sophie Y. 1% 12% 38% 35% 13% 2% -
127 WATTANAKIT Anda - - 8% 32% 39% 18% 2%
128 ZHAN Clare 14% 37% 34% 13% 2% - -
129 HOAGLAND Sally 8% 31% 40% 18% 3% - -
130 GIERAT-KATZ Izabella 1% 28% 45% 22% 4% - -
131 HASIM Eurietta 8% 33% 37% 18% 4% - -
132 KIM Zoe L. - - 3% 17% 43% 37%
133 FURMAN Maria - 5% 25% 42% 24% 4%
134 SHELIN Chelsea 1% 14% 35% 33% 14% 2%
135 GRAZIANO Ruby Mae 49% 39% 11% 1% - -
136 IYER Ishana 1% 11% 30% 36% 18% 3% -
137 PRESMAN Aerin - 4% 20% 35% 29% 10% 1%
138 SUN Hanya - 5% 22% 36% 26% 9% 1%
138 LEE Yeriel 10% 31% 36% 19% 4% - -
140 SCHULTZ Nomi 8% 27% 36% 22% 6% 1% -
141 DESANTIS-IBANEZ Elena 5% 30% 41% 20% 3% - -
142 NELSON-LOVE Lily B. - 3% 15% 32% 33% 15% 2%
143 CAMAMA Tessa - 9% 28% 36% 21% 6% -
144 MENG Fina 49% 40% 10% 1% - - -
145 DALEY Keira 1% 9% 29% 37% 20% 4% -
146 NGUYEN Ella 2% 25% 40% 25% 7% 1% -
146 GUESNARD Maelig 3% 20% 40% 29% 7% 1% -
148 SHU Youshan - 2% 14% 34% 35% 13% 1%
149 SMOTRITSKY Liat 4% 20% 35% 29% 11% 2% -
150 UM KIM Hyun Hee Lorena 42% 42% 14% 2% - - -
151 LIN Victoria T. 1% 30% 45% 20% 4% - -
152 KROPP Charlie 4% 19% 34% 29% 12% 2% -
152 SCHOR Elisabeth 2% 19% 40% 30% 8% 1% -
154 WANG Ziqiao (Claire) 3% 21% 40% 27% 8% 1% -
155 HAYNES Antonia 4% 33% 44% 17% 2% -
156 SHARMA Sanvi 14% 44% 32% 9% 1% -
157 YUNG Bethany 7% 34% 39% 17% 3% -
158 JEYOON Lauren 36% 42% 18% 3% - -
159 SCANLAN Claire 4% 23% 41% 26% 6% 1%
160 GAGARING Genia 14% 51% 29% 6% 1% -
161 XU Celina 14% 37% 32% 13% 3% - -
162 GEVA Eliana 1% 6% 20% 33% 28% 11% 2%
162 MOHEBI Neeka 16% 37% 31% 13% 3% - -
164 FENG Iris 22% 42% 27% 8% 1% - -
165 LIANG Jingjing 3% 18% 39% 29% 10% 1% -
166 HUANG Lanlan 1% 12% 32% 35% 16% 3% -
167 LIN Isabel 4% 22% 38% 27% 7% 1% -
168 YIN Gabriela 8% 33% 38% 17% 3% - -
169 KANE Chloe 1% 30% 42% 22% 5% 1% -
170 SHERMAN Olivia 26% 45% 23% 5% - - -
171 MISRA Tara 27% 45% 23% 5% - - -
171 WANG Lihong 14% 35% 33% 15% 3% - -
173 BLAETZ Isadora 12% 40% 35% 11% 2% - -
174 ZHAO Yanning 27% 55% 17% 2% - - -
175 UEMURA Lyllia 89% 10% - - - - -
175 FANG Olivia 91% 9% - - - - -
177 ENRILE Erica 1% 11% 31% 34% 18% 5% -
177 CHEONG Chloe 17% 39% 31% 11% 2% - -
179 XIE Yuyan 81% 18% 2% - - - -
180 FISCHBEIN Quinley 13% 39% 34% 11% 2% - -
181 ZHANG Elaine 11% 32% 35% 17% 4% - -
182 OSBORNE Guadalupe 67% 29% 4% - - - -
183 SHETTY Nandita 64% 32% 4% - - -
184 PAK Ella 87% 13% 1% - - - -
185 LEE Claudia 61% 32% 6% 1% - -
186 LOZIER Grace 12% 49% 31% 7% 1% - -
187 STEPHAN Ella Whitney 73% 25% 3% - - -
188 SCANLAN Alina Nev 63% 31% 6% - - - -
189 MCKENNA Analise 50% 38% 11% 1% - - -
190 ZHAO Emma 25% 41% 25% 7% 1% - -
191 TAMIR Annika 55% 36% 8% 1% - - -
191 LINARES Chantal 21% 41% 28% 8% 1% - -
193 LEE Adelynn 34% 44% 19% 3% - - -
193 LUCENA Yaretzi 85% 14% 1% - - - -
195 THOMAS Mackenzie 94% 6% - - - - -
196 DAVIS Elisabeth 54% 40% 5% - - - -

Explanation

The heatmap in this table provides a visual representation of the victory probability distribution for each fencer in their respective pools:

This heatmap visualization offers an immediate understanding of each fencer's expected performance compared to their actual results.