USA Fencing National Championships & July Challenge

Div I Men's Saber

Sunday, June 30, 2019 at 1:30 PM

Columbus, OH - Columbus, OH, USA

Probability density of pool victories

Reset

Explore the pool victory probability density for each fencer, with their actual victories highlighted in a box. Learn more.

# Name Number of victories
0 1 2 3 4 5 6
1 SHAINBERG Jonah L. - - - 1% 8% 34% 57%
2 SOUDERS Peter F. - - - - 5% 31% 63%
3 COHEN Josef A. - - 1% 4% 19% 41% 36%
3 KWAK Daniel (Dongwon) - 1% 5% 20% 37% 30% 7%
5 OSOLINIEC Victor E. - 1% 6% 19% 35% 30% 9%
6 ARMIJO Gabriel K. - 1% 5% 22% 41% 26% 5%
7 BOOTH Zaheer 1% 10% 28% 36% 21% 5%
8 MACKIEWICZ Andrew A. - - - 1% 9% 37% 54%
9 COSTIN Michael V. - - - 2% 15% 42% 41%
10 JOHNSON Zachary (Zack) C. - 2% 12% 29% 35% 19% 2%
11 HARVEY Nicholas J. 9% 29% 35% 20% 6% 1% -
12 SOLOMON Daniel P. - - - 3% 16% 41% 39%
13 DOLEGIEWICZ Filip - - 1% 5% 21% 41% 31%
14 MCBRIDE Jackson R. - 3% 15% 31% 33% 15% 2%
15 ROHRLACK Charles (Charlie) F. - 1% 7% 27% 46% 20%
16 KULDELL Spencer D. 3% 19% 40% 31% 8% 1%
17 METRYKA Karol - - - - 5% 30% 65%
18 LORTKIPANIDZE Guram - 5% 18% 34% 30% 12% 1%
19 LANDAU Nathaniel (Nat) B. 1% 11% 29% 35% 20% 4%
20 LORTKIPANIDZE Nickoloz 1% 11% 30% 36% 18% 3%
21 WALKER Christopher J. - - 2% 13% 44% 41%
22 HARLEY Colby A. 1% 8% 24% 34% 24% 7% 1%
23 KUSHKOV Simon O. 2% 11% 28% 33% 20% 6% 1%
24 SARON Mitchell S. - - - - 5% 30% 64%
25 KIM Stephen E. - 4% 15% 30% 32% 16% 3%
26 PANTELEEV Arsenii - 1% 5% 20% 37% 31% 7%
27 SHEPANEK Noah M. 2% 13% 31% 34% 18% 3%
28 SMITH Jared C. - 4% 18% 36% 32% 10%
29 ADEL Ali 1% 8% 25% 37% 23% 6% -
30 MARSEE James 24% 41% 26% 8% 1% -
31 BURGUNDER Quinten (Quin) A. 1% 10% 28% 34% 20% 6% 1%
32 SHIN Richard J.H. 10% 30% 34% 19% 6% 1% -
33 FIELDS Malcolm D. - 1% 8% 27% 41% 23%
34 IWAMOTO Eric Y. 11% 32% 35% 18% 4% < 1%
35 IGOE Benjamin - - - 1% 6% 31% 62%
36 MIKA Casper 1% 5% 19% 33% 29% 12% 2%
37 PARK Donghwan 1% 7% 24% 36% 25% 6%
38 BIVINS III George A. - 5% 20% 36% 29% 9%
39 REESE Aaron S. 5% 21% 34% 27% 11% 2%
40 HONG Marshall Q. 18% 40% 30% 10% 1% -
41 MULLENNIX Ethan M. - 1% 5% 20% 37% 31% 6%
42 SCHMITT Trenton R. - 2% 10% 29% 38% 20% 2%
43 CHOU Stephen C. 2% 13% 31% 33% 17% 4% -
44 LOSS Geoffrey M. - - 2% 11% 28% 38% 21%
44 GREENBAUM Maxwell H. - 5% 22% 39% 28% 6% -
46 RABINOWITZ Benjamin 1% 8% 24% 34% 24% 8% 1%
47 KUPANOFF Dimitri N. - 2% 9% 26% 36% 23% 5%
48 KIM Charlson - 5% 19% 35% 30% 10%
49 NADILE Henry V. 1% 6% 20% 34% 29% 10%
50 DINU Nicholas D. 5% 23% 37% 26% 8% 1%
51 JOHNSON Andrew J. - 2% 11% 30% 38% 18%
52 LINDER James (Luke) L. - - 1% 9% 33% 47% 9%
53 ANGLADE Junior Ronald (RJ) E. 1% 6% 20% 33% 27% 11% 1%
54 LIU Jesse Y. 6% 23% 34% 25% 9% 2% -
54 PREVEY-SULLIVAN Owen D. 2% 15% 32% 32% 16% 3% -
56 MULVANEY Alec S. 4% 19% 33% 28% 12% 3% -
57 TRAVAGLIONE Conor D. 3% 15% 31% 31% 16% 4% -
58 ZHOU Matthew R. 2% 14% 31% 33% 17% 4% -
59 DEMAREST Iain 3% 16% 32% 31% 15% 3% -
60 YANG Kevin S. 2% 12% 33% 35% 16% 2% -
61 SMITH Mitchell M. 4% 19% 34% 29% 12% 2% -
62 LEE Kyle 9% 31% 36% 19% 5% -
63 DEL VECCHIO Nicolas (None PLEASE) S. - 1% 7% 22% 36% 27% 7%
64 KIM Sean G. 1% 8% 25% 35% 24% 7% 1%
65 STONE Ben - 5% 19% 34% 30% 11% 1%
66 MEHTA Sachin N. - 1% 5% 20% 37% 30% 7%
67 CENTANNI Salvatore (Sal) M. 2% 12% 28% 33% 19% 5% -
68 VIDOVSZKY Robert T. - - - 1% 12% 40% 46%
69 NOBLE Daniel 39% 41% 17% 3% < 1% - -
70 KWONG Samuel J. 1% 8% 25% 35% 23% 7% 1%
71 TAKEMARU Leo 4% 18% 33% 30% 13% 2%
72 WALKER Dalton F. - 4% 16% 34% 33% 12%
73 MA Jonathan D. - 2% 12% 32% 38% 16%
74 CHAN Zachary D. 2% 16% 38% 33% 10% 1%
75 MERCHANT Marcel J. - 1% 8% 26% 39% 22% 4%
75 SINGER Carson 15% 37% 33% 13% 2% - -
77 LIM Ryan Y. 1% 10% 30% 36% 19% 4% -
78 CAPPELLUTI Ryan M. 5% 21% 34% 27% 11% 2% -
79 YEN Darren - 4% 17% 33% 30% 13% 2%
80 JEFFORDS Alexander 2% 14% 30% 32% 17% 4% -
81 KARAM Tariq A. - - 2% 11% 29% 38% 19%
82 ATTIG Will T. 2% 14% 31% 33% 16% 3% -
83 KIM Benjamin H. 16% 39% 32% 11% 2% - -
84 GRATHWOL-SEAR Sebastian 13% 38% 35% 12% 2% -
85 GRUBE Sterling T. 1% 9% 27% 36% 22% 5%
86 BERKAY Deniz 13% 35% 33% 15% 3% -
87 STATEN-LUSTY Silas J. 4% 19% 33% 29% 12% 2%
88 CHOI HYUNSEOK 1% 9% 27% 36% 22% 5%
89 MICHELL Bailey 5% 21% 34% 27% 11% 2%
90 OH Jason H. - 1% 9% 28% 41% 21%
91 BOLTON Dawson E. 8% 27% 35% 22% 7% 1% -
92 WILLIAMS Nolan E. 3% 18% 36% 30% 11% 2% -
93 KANG Brandon M. 2% 14% 31% 33% 16% 3% -
94 CHEN Brian 5% 22% 36% 26% 10% 2% -
94 QIU Le 7% 27% 36% 23% 7% 1% -
96 DROZ Camden J. 3% 19% 36% 30% 10% 1% -
96 PRIEST Leighton K. 7% 24% 34% 24% 9% 2% -
98 BARBER William S. 26% 41% 25% 7% 1% - -
99 BREIER Satchel E. 6% 23% 34% 25% 10% 2% -
100 LEUNG Mark - 1% 9% 28% 38% 21% 2%
101 OSTER Keegan J. 3% 15% 33% 32% 14% 3% -
102 BUENAVENTURA Christian 2% 13% 30% 32% 18% 4% -
103 ESCUETA Tony V. 2% 11% 29% 34% 19% 5% -
103 RAMAN Easwer 9% 29% 36% 21% 6% 1% -
105 HUDDY Brandon J. 34% 43% 19% 3% - - -
106 ZIELINSKI Nicholaus M. 21% 41% 28% 9% 1% -
107 RAINVILLE-POND Schuyler J. 23% 41% 27% 8% 1% -
108 CHEN Howard 4% 21% 36% 28% 10% 1%
109 BACON Elias (Eli) H. 4% 21% 37% 28% 9% 1%
109 HEATHCOCK Antonio 2% 11% 30% 35% 19% 4%
111 KIM Brian S. 1% 12% 30% 34% 18% 4%
112 DESCHERER David 2% 12% 28% 34% 20% 5%
113 LIMB Matthew G. 6% 25% 36% 25% 8% 1%
114 MOON Sean H. - 1% 8% 23% 35% 26% 7%
115 BOLTON Braydon A. 11% 32% 35% 18% 4% - -
115 WINKLER Lucas G. 5% 21% 35% 27% 10% 2% -
117 COTTER Liam 14% 34% 33% 15% 4% - -
118 ERACHSHAW Taras P. 11% 32% 34% 18% 4% - -
119 CHAYEVSKY Kirk 15% 35% 32% 15% 3% - -
120 ZU Kevin 3% 15% 30% 31% 16% 4% -
121 LIN John A. 2% 11% 28% 33% 20% 6% 1%
122 RIGGINS Littleton K. 16% 36% 31% 14% 3% - -
122 WANG Qifa 17% 39% 31% 11% 2% - -
124 HUSSAIN Faaris 21% 39% 28% 10% 2% - -
125 SMITH David C. 9% 29% 35% 20% 6% 1% -
126 PORTMANN Stein J. 22% 41% 27% 8% 1% - -
127 TE VELDE Noah C. 1% 7% 23% 36% 27% 7%
128 HU William 3% 17% 33% 31% 14% 2% -
129 VACCARI Braden 36% 43% 18% 3% - -
130 TONG Qilin 3% 18% 35% 30% 12% 2% -
131 HARLEY Sage N. 45% 39% 14% 2% - -
132 SEVOSTYANOV Stepan (Seva) 4% 19% 34% 29% 12% 2% -
133 COPELAND Oliver E. 13% 37% 34% 14% 2% - -

Explanation

The heatmap in this table provides a visual representation of the victory probability distribution for each fencer in their respective pools:

This heatmap visualization offers an immediate understanding of each fencer's expected performance compared to their actual results.