October NAC

Div II Women's Saber

Friday, October 18, 2019 at 12:00 PM

Kansas City, MO - Kansas City, MO, USA

Probability density of pool victories

Reset

Explore the pool victory probability density for each fencer, with their actual victories highlighted in a box. Learn more.

# Name Number of victories
0 1 2 3 4 5 6
1 CHIOLDI Mina - - 3% 15% 33% 35% 14%
2 DUCKETT Madison - 2% 10% 28% 35% 20% 4%
3 STONE Hava S. - - 4% 21% 40% 28% 6%
3 MIKA Veronica - - 3% 18% 37% 32% 10%
5 JULIEN Michelle - 1% 5% 20% 35% 29% 9%
6 BAKER Audrey C. - 2% 13% 32% 33% 16% 3%
7 BALMASEDA Sabrina F. - 6% 23% 35% 26% 9% 1%
8 BALAKUMARAN Maya - 5% 20% 34% 28% 11% 2%
9 YODER Bridget H. - 3% 15% 32% 32% 16% 3%
10 SUBRAMANIAN Nitika 2% 12% 27% 32% 20% 6% 1%
11 TIMOFEYEV Nicole - - 1% 9% 31% 41% 17%
12 LI Victoria J. - 1% 8% 24% 35% 25% 7%
13 OBRADOVIC Ana 2% 11% 27% 32% 21% 7% 1%
14 ZIELINSKI Isabella G. - 1% 7% 21% 35% 28% 9%
15 ATLURI Sara V. - - 5% 22% 38% 27% 7%
16 TURNOF Kayla M. 1% 8% 24% 34% 24% 8% 1%
17 YONG Erika E. - - - 5% 24% 44% 27%
18 NOVICK Mia J. 3% 17% 33% 30% 14% 3% < 1%
19 CANNON Sophia E. - 1% 6% 19% 34% 30% 10%
20 ENGELMAN Madeline A. - - 2% 10% 28% 39% 21%
21 TUCKER Iman R. - 1% 5% 21% 37% 29% 8%
22 HURST Kennedy 5% 20% 32% 27% 13% 3% -
23 PRIEUR Lauren - 4% 16% 31% 31% 15% 3%
24 XI Shining - 2% 13% 31% 33% 17% 3%
25 KOBERSTEIN Maggie - 2% 12% 29% 34% 19% 4%
26 GIRARDI Aemilia 6% 23% 34% 25% 10% 2% -
27 CODY Alexandra C. - 1% 5% 19% 34% 30% 10%
28 CHIANG Emily 1% 10% 25% 32% 23% 8% 1%
29 SCALAMONI-GOLDSTEIN Charlotte S. - 1% 7% 24% 38% 25% 5%
30 KONG Isabel - - 4% 18% 37% 31% 10%
31 ZINNI Kaylyn M. 3% 15% 32% 32% 15% 3%
32 VESTEL Mira B. - 1% 6% 19% 34% 30% 11%
33 ANDRES Katherine A. - - 4% 18% 35% 31% 10%
34 LIN Zhiyin 1% 12% 33% 34% 16% 4% -
35 MOZHAEVA MARIA - 2% 10% 26% 35% 22% 5%
36 RIZKALA Joanna - 3% 15% 33% 34% 14%
37 SINHA Anika - 1% 4% 17% 33% 32% 13%
38 LARIMER Katherine E. - 6% 24% 39% 24% 6% 1%
39 CHANG Emily - 2% 8% 23% 33% 26% 8%
40 SHIN Andrea Y. - 1% 8% 22% 34% 27% 8%
41 BAKER Amelia M. 17% 48% 29% 6% < 1% - -
42 KALINICHENKO Alexandra (Sasha) - 2% 9% 26% 35% 23% 5%
43 KITTLE Lauren 17% 42% 30% 10% 2% - -
44 TANG Catherine H. 1% 10% 28% 35% 21% 5%
45 KALRA Siya L. 1% 7% 24% 36% 25% 7%
46 NEWELL Alexia C. - - 4% 16% 33% 34% 13%
47 HILD Nisha 2% 11% 26% 32% 21% 7% 1%
48 ALFARACHE Gabriella C. 4% 19% 32% 28% 13% 3% -
49 KOO Samantha - 1% 6% 21% 36% 28% 9%
50 YANG Ashley M. - - 4% 17% 35% 33% 11%
51 MANUBAG Amanda R. - 4% 15% 29% 31% 17% 4%
52 SEAL Julie T. - 1% 7% 20% 34% 29% 10%
53 DARINGA Arianna - 1% 6% 22% 36% 28% 8%
54 HUANG Sharon 4% 19% 32% 28% 13% 3% -
55 ULIBARRI Nevaeh L. 12% 33% 34% 17% 4% -
56 YANG Angelina 1% 11% 28% 34% 20% 6% 1%
57 BHATTACHARJEE Rhea 1% 6% 20% 32% 27% 12% 2%
58 MUNGOVAN Cecilia C. 26% 42% 25% 7% 1% - -
59 OXENSTIERNA Carolina - 1% 6% 22% 36% 28% 8%
60 ZENG Xiaoyi 18% 41% 30% 10% 2% - -
61 SLOBODSKY Sasha L. 13% 33% 34% 16% 4% -
62 HOLMES Emma 36% 41% 18% 4% - - -
63 LEE Sophia 5% 27% 42% 22% 5% - -
64 KIM Nam Heui 16% 43% 31% 9% 1% - -
65 ABOUDAHER Janna A. - 4% 19% 36% 29% 10% 1%
66 ROGERS Pauline E. 1% 11% 32% 35% 17% 4% -
67 FEARNS Zara A. 1% 5% 17% 30% 30% 15% 3%
68 LAMBERT Jasmine M. - - 1% 5% 21% 43% 31%
69 KRYLOVA Valery 5% 24% 36% 25% 9% 2% -
70 PETTIT Sara M. 1% 8% 27% 35% 22% 6% 1%
71 RODGERS Sally E. 8% 30% 38% 20% 5% 1% -
72 KIM Sujin 10% 33% 36% 17% 4% - -
73 TODD Phoebe 1% 14% 33% 32% 16% 4% -
74 HAYES Grace Y. 1% 8% 24% 33% 24% 9% 1%
75 LIM Isabel K. - 1% 5% 19% 35% 31% 10%
76 DAVIS Charlotte 40% 42% 15% 2% - - -
77 XIKES Katherine E. 1% 7% 22% 33% 26% 10% 1%
78 WHEELER Kira 24% 40% 26% 8% 1% - -
79 DHAR Aamina 10% 28% 34% 20% 7% 1% -
80 BILILIES Sophia 7% 24% 33% 24% 10% 2% -
81 HUNG Anna 1% 11% 27% 34% 20% 6% 1%
82 HSU Mia Y. 32% 44% 20% 4% - - -
83 LIN Selena 8% 31% 38% 18% 4% - -
84 MARQUES Hannah 18% 37% 30% 12% 3% - -
85 CUNNINGHAM Erin 54% 37% 9% 1% - - -
86 HU Allison C. 6% 33% 40% 18% 3% - -
87 NG Sarah W. 6% 23% 35% 25% 9% 2% -
88 LI Angela 36% 44% 17% 3% - - -
89 RAHIM Alina O. 19% 40% 30% 10% 1% - -
90 PROBST Alyssa 72% 25% 3% - - - -

Explanation

The heatmap in this table provides a visual representation of the victory probability distribution for each fencer in their respective pools:

This heatmap visualization offers an immediate understanding of each fencer's expected performance compared to their actual results.