ROCKLAND COMMUNITY COLLEGE - Suffern, NY, USA
Explore the pool victory probability density for each fencer, with their actual victories highlighted in a box. Learn more.
# | Name | Number of victories | ||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | ||
1 | BEZRODNOV Michael | - | - | - | 4% | 19% | 43% | 33% |
2 | FLECKENSTEIN Benjamin T. | - | 2% | 10% | 27% | 36% | 21% | 4% |
3 | DODIN David | - | - | 2% | 11% | 34% | 39% | 15% |
3 | JIN Owen | - | - | - | 3% | 20% | 46% | 32% |
5 | SHA Michael | - | 4% | 17% | 34% | 31% | 12% | 2% |
6 | AGAON Shawn | - | - | 1% | 6% | 26% | 43% | 24% |
7 | KOKENGE Reid | - | - | 1% | 8% | 28% | 41% | 21% |
8 | MISHIMA Torata | - | - | 1% | 7% | 26% | 43% | 23% |
9 | WU Joseph | - | - | - | 1% | 9% | 38% | 52% |
10 | AGAON Ethan | - | - | 3% | 16% | 38% | 34% | 8% |
11 | HE Lawrence | - | - | 1% | 7% | 24% | 41% | 26% |
12 | MAO Benjamin | - | 3% | 16% | 33% | 32% | 14% | 2% |
13 | LAI Aedin | - | 1% | 8% | 27% | 40% | 21% | 3% |
13 | SVERDLOV Seth | 1% | 8% | 26% | 35% | 23% | 6% | 1% |
15 | SHCHUR Landon | - | - | 3% | 19% | 43% | 29% | 6% |
16 | DURKIN Tristan E. | 2% | 11% | 28% | 33% | 20% | 5% | 1% |
17 | TUMIBAY Noah C. | - | - | 2% | 12% | 32% | 38% | 16% |
18 | KNOX James | - | - | 1% | 7% | 26% | 42% | 23% |
19 | IARIKOV Nicholas | - | - | 1% | 8% | 26% | 41% | 24% |
20 | ZHANG Zixian (Shawn) | - | 4% | 17% | 33% | 30% | 13% | 2% |
21 | WU Jonathan | - | - | 2% | 9% | 28% | 40% | 21% |
22 | BASOK Nikita | - | 1% | 6% | 21% | 36% | 28% | 8% |
23 | LEE Noah | - | - | - | 5% | 27% | 45% | 22% |
24 | NGUYEN Damien | 1% | 9% | 27% | 35% | 21% | 5% | - |
25 | KOYFMAN Benjamin | 1% | 7% | 24% | 37% | 24% | 6% | 1% |
26 | XIE Brandon | 2% | 15% | 33% | 32% | 15% | 3% | - |
27 | CASASSOVICI Georges | 3% | 17% | 34% | 30% | 13% | 3% | - |
28 | MAHESH Tarun | - | 1% | 8% | 24% | 36% | 24% | 6% |
29 | STELTENKAMP Neal | 19% | 38% | 30% | 11% | 2% | - | - |
30 | ZHANG Ethan | - | 7% | 36% | 40% | 14% | 2% | - |
31 | SHULKIN Mark | 12% | 35% | 35% | 15% | 3% | - | - |
32 | FENG Du | 7% | 26% | 36% | 23% | 7% | 1% | - |
33 | ZAYDMAN Ethan | - | 3% | 15% | 32% | 33% | 14% | 2% |
34 | PAN Tristan | - | 5% | 32% | 42% | 17% | 3% | - |
35 | FUSSMAN Yuval | 9% | 30% | 36% | 19% | 5% | 1% | - |
36 | SAVORETTI Francesco | - | - | 3% | 15% | 37% | 34% | 10% |
37 | MEN Junda | 3% | 18% | 38% | 31% | 10% | 1% | - |
38 | JIANG ryan | 3% | 15% | 31% | 32% | 16% | 4% | - |
39 | WANG zhixing (Daniel) | - | 2% | 11% | 28% | 36% | 20% | 3% |
40 | SONG Troy | 5% | 23% | 38% | 25% | 7% | 1% | - |
41 | SCAPICCHIO Stephen | 2% | 12% | 27% | 32% | 20% | 7% | 1% |
42 | HU Robert J. | 5% | 26% | 42% | 22% | 5% | - | - |
43 | WIECHMANN Colin | - | 1% | 5% | 19% | 36% | 30% | 9% |
44 | ZOU Xianyang (Max) | 8% | 29% | 36% | 20% | 6% | 1% | - |
45 | SAVORETTI Pietro | 2% | 12% | 31% | 34% | 18% | 4% | - |
46 | REPIC Oliver | 23% | 40% | 27% | 9% | 1% | - | - |
47 | TANG Charles | 29% | 44% | 22% | 5% | - | - | - |
48 | ZHANG Roland | 19% | 42% | 30% | 9% | 1% | - | - |
49 | LEIBOWITZ Ryan | 1% | 9% | 25% | 33% | 23% | 8% | 1% |
50 | DUSSEAU Maddax | 6% | 24% | 36% | 25% | 8% | 1% | - |
51 | SERAFIN Ben | - | 1% | 6% | 22% | 38% | 27% | 6% |
52 | CHEN Jun Ho | - | 4% | 20% | 40% | 28% | 7% | 1% |
53 | GOON Tristan Yang | 20% | 39% | 29% | 10% | 2% | - | - |
54 | GRAYSON Joshua | 16% | 40% | 31% | 11% | 2% | - | - |
55 | QUINLAN Sean | 2% | 11% | 29% | 34% | 19% | 4% | - |
55 | POCHATKO Christian | 21% | 41% | 28% | 9% | 1% | - | - |
57 | OTTO Nathaniel B. | 4% | 20% | 36% | 28% | 10% | 2% | - |
58 | RITTERSHAUS Bryce | 39% | 41% | 17% | 3% | - | - | - |
58 | VINE Ross | 17% | 43% | 30% | 9% | 1% | - | - |
60 | SARIDAKIS Ioannis Thanos | 26% | 42% | 25% | 7% | 1% | - | - |
61 | SOSNICK Samuel | 35% | 51% | 13% | 1% | - | - | - |
62 | DOWD Peter L. | 43% | 47% | 10% | 1% | - | - | - |
63 | PEDICONE Joseph | 10% | 40% | 38% | 11% | 1% | - | - |
The heatmap in this table provides a visual representation of the victory probability distribution for each fencer in their respective pools:
This heatmap visualization offers an immediate understanding of each fencer's expected performance compared to their actual results.