AFM Super Regional SYC/RJCC/ROC (D1A/VET)

Div I-A Men's Épée

Saturday, November 5, 2022 at 8:00 AM

Santa Clara Convention Center - Santa Clara, CA, USA

Probability density of pool victories

Reset

Explore the pool victory probability density for each fencer, with their actual victories highlighted in a box. Learn more.

# Name Number of victories
0 1 2 3 4 5 6
1 KHAYAT Ziad N. - - - 5% 31% 63%
2 LEE Seungwon - - 3% 15% 34% 35% 12%
3 HABIB Farooq - - 2% 10% 28% 39% 21%
3 BOUMEDIENNE Sami - - 1% 8% 26% 41% 24%
5 RHYU Kozmo - - - 3% 15% 41% 41%
6 LOWE-THORPE Tyler - 1% 9% 28% 39% 20% 3%
7 GAO Chaney C. - 1% 6% 21% 36% 28% 8%
8 JAKLITSCH Michael (Mike) T. - - 2% 11% 30% 39% 19%
9 JIN Daniel - - 1% 8% 26% 41% 25%
10 MOSES Alexander - - - 2% 13% 40% 45%
11 WELDON Benjamin - - 3% 15% 35% 36% 10%
12 LI Patrick - 1% 7% 21% 35% 28% 9%
13 JONES Caleb 9% 32% 39% 18% 3% -
14 RAJ Shrey 2% 13% 30% 32% 18% 5% -
15 COHEN Benjamin A. - 4% 16% 32% 32% 14% 2%
16 FU Leon - 9% 29% 36% 20% 5% 1%
17 STRAUSS Luke - - 1% 6% 23% 41% 29%
18 ALLEN Graham - - - 1% 6% 32% 61%
19 WATT Darren - 3% 14% 32% 33% 16% 3%
20 CHIEN Brandon - - - 1% 7% 34% 59%
21 PARK Elliot - - 3% 17% 38% 34% 7%
22 LIU Andrew - 1% 8% 24% 36% 24% 6%
23 SARKAR Anish 1% 10% 28% 35% 20% 5% 1%
24 MA Victor - 1% 9% 25% 35% 23% 6%
25 KNUDSEN Travis - 5% 19% 33% 29% 12% 2%
26 SINHA Zaan 1% 9% 25% 34% 23% 8% 1%
27 DAO Alexander 28% 44% 23% 5% - -
28 KIM Benjamin I. - 3% 18% 40% 33% 5%
29 PERKA Michael - - 3% 16% 36% 34% 11%
30 RICHARDS Jackson D. 1% 9% 26% 34% 22% 7% 1%
31 CHRISTENSEN Parker 2% 13% 30% 33% 18% 4% -
32 KIM Sullivan 2% 11% 28% 34% 20% 5% -
33 JOHNSTON Conner S. - - 1% 7% 25% 41% 26%
34 CASTELLY Luke - 3% 15% 34% 34% 13% 1%
35 ZHANG Nathan - 4% 20% 37% 29% 9% 1%
36 BENACK Steven M. - - - 1% 8% 36% 55%
37 ZACHES Torrey - 9% 28% 36% 21% 6% 1%
38 PAN Tristan 3% 17% 33% 30% 13% 3% -
39 SIRBU Dan 11% 32% 35% 18% 4% - -
40 ZHANG Alec - 1% 8% 25% 37% 24% 6%
41 RYAN Seth C. - 3% 16% 32% 31% 15% 3%
42 DENNIS Ethan - 2% 13% 31% 35% 17% 3%
43 LIU Yikun 9% 29% 35% 21% 6% 1% -
44 MADSEN Jr Eric W. - - 4% 17% 38% 34% 7%
45 CHU Allan - 3% 14% 31% 33% 16% 3%
46 EVERS Gabriel - 4% 16% 31% 31% 15% 3%
47 TORRES Nicolas 1% 18% 37% 30% 12% 2% -
48 LEE Chun Po 1% 9% 28% 37% 21% 5% -
49 MENDOZA Zachari - 2% 9% 25% 35% 23% 5%
50 DEKERMANJI Christopher - 2% 10% 26% 34% 22% 5%
51 CARRIER Gabriel A. - 1% 7% 23% 37% 26% 5%
52 ALI Adam 3% 17% 35% 30% 12% 2% -
53 WANG owen 1% 7% 24% 35% 24% 7% 1%
54 ROBITZSKI Daniel A. 1% 7% 27% 41% 21% 2%
55 BARNETT Devin 4% 19% 34% 28% 12% 2% -
56 LO Jake - 1% 6% 22% 37% 28% 7%
57 LOFTUS Luca 17% 37% 31% 12% 2% - -
58 CHIEN Zachary M. - 1% 10% 29% 37% 20% 3%
59 GIOVAGNOLI Nolan 6% 27% 38% 22% 6% 1% -
60 KUO Rylan 12% 33% 34% 17% 4% - -
61 RYAN Christopher 1% 9% 28% 37% 20% 4% -
62 MING Nathan 1% 10% 27% 35% 22% 6% -
63 NALBANDIAN VAHAN P. 7% 25% 35% 23% 8% 1% -
64 HE Zhiheng 11% 35% 37% 15% 2% -
65 MCADOO Declan - 4% 19% 36% 30% 10% 1%
66 CLAES Lucas 48% 38% 12% 2% - - -
67 CROSSMAN Brandon - 5% 22% 37% 27% 8% 1%
68 ELZAYN Hadi S. - 1% 9% 28% 38% 21% 3%
69 LIU Noah 6% 25% 37% 24% 7% 1% -
69 OU wei 27% 41% 24% 7% 1% - -
71 MIAO KUNQI 14% 38% 34% 13% 2% - -
72 GENCHEV Madav 28% 43% 23% 6% 1% - -
73 LEE JiYuen 24% 45% 24% 6% 1% - -
74 MARTIN Charles 24% 43% 25% 7% 1% - -
75 CHOI Kaiden I. 3% 16% 33% 31% 14% 3% -
76 GAO Zachary 2% 16% 34% 31% 14% 3% -
77 MENDOZA Zandro 1% 12% 31% 34% 18% 4% -
78 KONG Martin C. 12% 35% 35% 15% 3% - -
79 BUERGISSER Kai 22% 43% 27% 8% 1% - -
79 BURLING Trenor 3% 19% 37% 30% 10% 1% -
81 FANG Hanning 4% 19% 34% 29% 12% 2% -
82 BEAVER Aaron 1% 11% 28% 33% 20% 6% 1%
83 JU Hanul 21% 41% 28% 8% 1% - -
84 CAMPBELL Kenneth 6% 26% 37% 23% 7% 1% -
84 LIPTON Michael D. 5% 24% 36% 25% 9% 2% -
84 RAHMAN Yousef 30% 45% 21% 4% - - -
87 LOMIO Nicholas A. 12% 33% 33% 17% 4% 1% -
88 TETALI Vishwanath 54% 36% 9% 1% - - -
89 LI zerong 37% 41% 18% 4% - - -
90 CHANG Kristopher 87% 13% 1% - - - -

Explanation

The heatmap in this table provides a visual representation of the victory probability distribution for each fencer in their respective pools:

This heatmap visualization offers an immediate understanding of each fencer's expected performance compared to their actual results.